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INTRODUCTION
I t is well known that stable and cost-effective explicit fin ite-diffe rence 2D wavefie ld extrapolators can

be designed using least-squares fi l ters (Holberg, 1988) . The method handles late ral ve locity variations
and h igh angle ene rgy that cannot be proper ly migrated is suppressed . This energy is often smeared
and dispersed when conventional methods are used. The immediate extension of Holberg's operato rs
to the 3D case leads to nume r ically expensive 2 D convolu tional filters ( Blacquière et al, 1989) . Ha l e

(1991b) introduced 3D wave ext rapolation using M cClellan t ransfo rmations reducing the computationa l

tost significant ly; but spatial oversampling is needed to avoid numerical distortion . Soubaras (1992)
proposed a mo re accurate scheme using a series expansion of the 3 D extrapolation operator in terms of
second derivatives . He applied t he Remez exchange algo rithm fo r optimization . Ou r approach is based
on an expansion of second derivatives and the use of Chevbyshev recursion. Furthermore, we apply tab-
ulated fi l ters of var iable order approximating seco nd derivatives up to pre-specified spatia l freque n ties .
All optimization is done by using least-squa res. The resulting extrapolation algorithm for 3D mig ration
is computationa lly more efficient than comparab le methods and eminently suited for high dip imaging .

3D WAVE EXTRAPOLATOR DE SIGN
In explicit finite-difference 3 D migration each frequency o f the wavefield is downward continued by

convolution with a 2D circularly symmetric spatial filter, wh ich has a Fourier transform that can be
w r itten :
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The variable k is given by k2 = Z (kz + ky) with k, k, ky E [0, a] . The temporal frequency is denoted w
and c is the velocity.

The Chevbyshev recursion identity cos(nk) = 2 cos k cos[(n-1)k]-cos[(n-2)k] enables us to compute
the cos(nk) terms in (1) Erom cosk . Using this formula, the 2D filter design approach consists of solving
two 1D filter problems : i) We design a spatial filter with a frequency response H(k) that approximates
cos k by using the series expansion H(k) = Po + 01D(k), where D(k) is a real one-dimensional filtér
approximating k2 (Soubaras,1992) . ii) The complex coefficents f,,,n = 0, N in (1) are optimized by using
least-squares and H(k) instead of cos k in the Chevbyshev recursion formula .

The fact that D(k) = Z[D(kx)+D(ky)] implies that h(x, y), which corresponds to H(k) in the spatial
domain, consists of two one-dimensional filters operating in the x- and y-direction respectively . The
2D convolution is carried out by applying the spatial filter h(x, y) and the coefficents f,,,n = 0, N in a
Chevbychev recursion scheme .

Soubaras (1992) used a fixed second derivative operator which is accurate up to 70% of the spatial
Nyquist frequency. We suggest to precompute and tabulate optimally designed operators for each ratio
wáx/c, leading to frequency responses of the forma
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approximating k2 for 1 k 1 < 1 -°x sin 0„.., 1 . The design parameter 8,,, 6z denotes the maximum anglé of
dips to be migrated . We also vary the filter length L, using sho r ter filters for low frequenties to reduce
the number of computations, and Jonger filters for hig her frequenties to meet the demand for accuracy.
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Figu re 1 : Horizontal slice of 3D image of a spherical reflector, c utting through the re flector at a depth
whe re the reflector dip ang l e i5 60° . P roposed scheme (left) and H a le's improved McClellan transform
(right) .

COMPUTATIONAL COST AND NUMERICAL EXAMPLE
The presented method is very flexible and an example illustrates its potential in ferms of efficiency and

accuracy . We have utilized a set of second derivative operators with half-lengths L = 1, 3, 5 . In this case
the mean number of coefficients used in h(x, y) is .^,s 12 .6 . Hale's (1991b) improved McClellan transform

and Soubaras' (1992) scheme require 17 coefficients . In addition, Hale (1991a,b) used sub-optima! 2D
extrapolators and Soubaras' method needs more expansion terras (N) than the proposed method, both
resulting in more recursion steps than the proposed scheme requires when high dip imaging is desired .

A wavelet witti a bandwith of 50Hz has been migrated to compare the proposed scheme to the Hale-
McClellan method. Depth slices are shown in Figure 1 . In the Aale-McClellan migration we are not
using Hale's original migration operators, but the more optimal operators of Rolberg . The disturbing
dispersion artefacts are only due to the sub-circular McClellan transform . The number of coefficents is
N = 12 for botte methods . The grid spacing is áx = Dy = Ox = lOm, the velocity c = 2000 m/s and

emax = 60 0

The proposed scheme is limited by the gridspacing, requiring only of two gridpoint per wavelength .
In comparsion, the improved McClellan transform needs three to four gridpoints per shortest wavelength
to get rid of the dispersion in the azimuth direction .

The canclusion is that in situations where high accuracy is required, the proposed scheme is five to

ten times (aster that the Haie-McCleíían scheme, decreasing the computing time for post-stack 3D depth
migration on a state of the art: vector computer from days to hours .
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